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Abstract
As online cloud services expand rapidly, layer-7 load balancing has
become indispensable for maintaining service availability and per-
formance. The emergence of programmable switches with both high
performance and a certain degree of flexibility has made it possible
to apply programmable switches to load balancing. Nevertheless,
the limited memory capacity and the relatively sluggish speed of
table entry insertion and deletion of programmable switches have
severely constrained their performance.

To this end, we introduce Miresga, a hybrid and high-
performance layer-7 load balancing system by co-designing hard-
ware and software. The core idea of Miresga is to maximize the
utilization of hardware and software resources by rationally parti-
tioning the layer-7 load balancing task, thereby improving perfor-
mance. To achieve this, Miresga offloads the elephant flows, which
account for the majority of traffic, to programmable switches that
excel at packet processing, and Miresga utilizes general-purpose
servers with stronger computational capabilities to parse applica-
tion layer protocols and apply load balancing rules. To alleviate
memory pressure on the programmable switch, Miresga employs a
back-end agent to handle memory-intensive tasks, working in con-
junction with the programmable switch to complete the offloaded
tasks. This design leverages the performance advantages of the
programmable switch while avoiding bottlenecks caused by its lim-
ited memory and table insertion speed. We implement the Miresga
prototype with a 3.2 Tbps Intel Tofino switch and general-purpose
servers. The evaluation results show that Miresga achieves 3.9×
throughput and 0.4× latency compared to software load balancing
solutions. Compared to the state-of-the-art design employing pro-
grammable switches, Miresga achieves almost the same throughput
and latency for delivering large objects and 5.0× throughput and
0.2× latency when transmitting small objects.
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1 Introduction
Modern online service providers utilize load balancing in cloud
data centers to distribute traffic across large server clusters [5]. An
online service usually receives traffic from outside the data center
through one or a few virtual IPs (VIPs). Each server in the cluster is
assigned an individual direct IP (DIP) address. The load balancers
(LBs) distribute the traffic destined for VIPs to the servers and route
it to specified servers based on pre-configured rules. However, the
packet-level header checking and port selection performed by LBs
introduce significant overhead to both throughput and latency.
Therefore, the performance of the LB has a substantial impact on
the quality of service.

With the increasing complexity of online services, layer-4 (L4)
load balancing, which relies solely on IP/TCP header informa-
tion, can no longer meet modern requirements. Layer-7 (L7) load
balancing enables LBs to determine destination servers based on
application-layer fields such as domain names or URI paths [5].
This approach provides finer granularity and enhanced security in
load balancing.

Traditional L7 load balancing solutions can be broadly catego-
rized into two types: software-based LBs, which operate on commer-
cial servers, and hardware-based LBs, which run on fixed-function
application-specific integrated circuits (ASICs). Software-based
LBs [3, 6, 9] are constrained by CPU packet processing speeds
and NIC bandwidth, requiring significant server scaling to man-
age high traffic volumes and numerous concurrent connections.
Moreover, multiple flows compete for the limited CPU resources,
leading to resource contention. Additionally, with Receive Side
Scaling (RSS) enabled on most modern servers, individual flows are
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typically processed by a single CPU core. The presence of elephant
flows—where a small number of flows dominate the traffic—can
significantly consume CPU resources, leading to increased latency
for other flows handled by the same CPU core [38]. In contrast,
hardware-based LBs [1, 4] offer superior performance on individual
machines but are costly and difficult to scale. Most hardware solu-
tions rely on DNS-based load balancing, which distributes traffic
solely by domain name and does not support other protocols [4].

The emergence of programmable network hardware, e.g., the
programmable switch, has enabled offloading some stateless opera-
tions onto the hardware, thereby significantly reducing the load on
server CPUs. Programmable switches utilize programmable ASICs
to achieve ∼Tbps line-rate packet processing, enabling operators
to modify packet headers based on customized rules. By replacing
ToR switches with programmable switches, such as Prism [39], a
substantial amount of traffic can be offloaded from servers, thereby
reducing the number of required servers and lowering costs. How-
ever, the extremely limited memory of programmable switches and
the mismatch between packet processing speeds and table entry
update rates have become significant bottlenecks. These limitations
hinder the full utilization of the performance advantages offered
by programmable switches.

To this end, we propose a hybrid and high-performance L7 load
balancing solution, Miresga, to accelerate L7 load balancing by co-
designing software and hardware. This co-design is motivated by
the strengths and limitations of programmable switches: while they
excel in high-speed forwarding, their memory resources and L7
protocol processing capabilities are limited. In contrast, general-
purpose servers offer abundant memory resources and strong L7
protocol processing capabilities but lack efficient forwarding per-
formance. Thus, combining the strengths of both is anticipated
to deliver enhanced performance. The core idea of Miresga is to
enhance L7 load balancing performance by strategically partition-
ing tasks to fully leverage software and hardware resources. Based
on detailed analysis, we divide L7 load balancing into three dis-
tinct tasks: 1) establishing connections with clients and servers, 2)
parsing application layer protocols and applying load balancing
rules, and 3) forwarding subsequent packets by splicing connec-
tions. Since L4 connection establishment with the client does not
require application layer protocol parsing in task 1), programmable
switches can handle it efficiently. Task 2), on the other hand, is more
suitable for implementation on general-purpose servers (referred to
as front-end servers in our design). Regarding task 3), while it can be
managed by the programmable switch alone, the potential bottle-
neck arises from the limited speed at which the local control plane
of the programmable switch can push updates to its data plane.
Thus, Miresga employs a parallel software-hardware strategy to
process task 3) using two distinct paths. The fast path through the
programmable switch is dedicated to handling elephant flows—large
data transfers. In contrast, the slow path, which relies on general-
purpose servers, manages the remaining mouse flows—small data
transfers.

Nonetheless, realizing this idea still faces three challenges. First,
for the flows offloaded to the programmable switch, the pro-
grammable switch needs to store the information of these to per-
form connection splicing correctly. However, storing the complete
information for these flows becomes daunting due to the limited

SRAM memory in the programmable switch. Second, since the L7
load balancer must establish connections with both the client and
the back-end server, using a complex TCP kernel stack can severely
impact performance and consume a significant amount of resources.
Third, given that Miresga is a hybrid system and TCP is a stateful
protocol, it is crucial to synchronize the flow state between the
hardware and software components to guarantee the reliability
of data transmission. To solve the challenges mentioned earlier,
Miresga proposes the following three designs:

• Efficient Connection Splicing (§4.1): Miresga employs two ap-
proaches to alleviatememory pressure on programmable switches
while ensuring the correct connection splicing. Miresga further
divides task 3) into two subtasks: modifying IP and port informa-
tion, and synchronizing sequence and acknowledgment numbers.
For the former, we save space by compressing the table entries;
as for the latter, since the initial sequence number differences can
not be compressed, we design a back-end agent to handle this
memory-intensive task.

• Lightweight Protocol Stack (§4.2): To bypass the kernel proto-
col stack, we design a lightweight protocol stack that merges the
states of the connections the LB established with both the client
and the server into a single state of this flow, consuming far fewer
resources. At the same time, the front-end server does not need
to perform the congestion control, lightening the burden to some
extent.

• State Consistency Maintenance (§4.3): In Miresga, two types
of states require synchronization: 1) the initial sequence numbers,
and 2) the information for splicing connections to the offloaded
flows. To synchronize the initial sequence number, Miresga fuses
the initial sequence numbers into the regular packets to avoid
additional delivery. For the latter, extra data transmission is es-
sential. Miresga does not require strict state consistency between
the passing parties but allows a short out-of-sync period. Instead
of blocking traffic, traffic is handled by the front-end server tem-
porarily.

We implement a prototype of the Miresga programmable switch
on a 3.2 Tbps Intel Tofino [7] switch and both the front-end
server and back-end agent on the general-purpose server (§5).
Our experimental results (§6) prove that Miresga can achieve
2.0 ∼ 3.9× throughput with a 40% latency compared to HAProxy [6]
with DPDK [41] accelerating. Compared to state-of-the-art pro-
grammable switch design Prism [39], Miresga achieves almost the
same throughput and latency for delivering large objects and 5.0×
throughput and 0.2× latency when transmitting small objects. Our
experiments also demonstrate that the presence of elephant flows
in the traffic does not affect the performance of our load balancing
due to offloading the elephant flows to the programmable switch
with high throughput. In contrast, the latency of software load bal-
ancing will increase significantly. Our prototype implementation is
available at https://github.com/THUNAME/Miresga.

2 Background and Related Work
In this section, we first offer a brief background of L7 load balancing.
Then, we briefly introduce the programmable switch and related
work.

https://github.com/THUNAME/Miresga
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2.1 Background
L7 load balancing uses application layer data for load balancing.
Currently, the majority of L7 load balancer designs adopt a proxy-
like architecture. In this setup, the load balancer first establishes
a connection with the client. It then parses the application layer
protocol to identify the appropriate back-end server to handle the
request. Unlike L4 load balancers, L7 load balancers must establish
distinct connections to both the client and the back-end server. This
process adds complexity and may degrade performance. Moreover,
because a persistent connection may contain multiple requests,
the same back-end server will not be guaranteed to process each
one. As a result, the load balancer must detect new client requests,
terminate the existing connection, and, when necessary, establish
a new connection with a different back-end server.

2.2 Related Work
Programmable Switches. Similar to traditional switching devices,
programmable switches offer extremely high throughput (∼Tbps).
Whilemaintaining high performance, programmable switches allow
operators to customize packet processing logic through domain-
specific languages like P4 [17], including customized header parsing
and modification. The packet processing pipelines (i.e., the data
plane running on the ASIC) of programmable switches consist of a
sequence of reconfigurable match-action tables (RMTs) [18] stored
in the in-switch SRAM. Operators can manage table entries through
the built-in CPUs (i.e., the local control plane) on the programmable
switches. Furthermore, the programmable switch can send parts
of a packet or the entire packet to the CPU via the digest function
or specific PCIe channels. Due to the combination of programma-
bility and high performance, programmable switches have been
applied in many fields, such as congestion control [11, 23, 49], cloud
gateways [62], security [22, 40, 43, 76, 78, 80], in-network comput-
ing [42, 47, 67, 74] and more fields [20, 21, 24, 68, 77, 82]. There is
also some work focusing on the L4 load balancing [34, 57, 79], but
programmable switches struggle to parse variable-length headers
of the application layer, necessitating a redesign to address this
issue.
Software L7 Load Balancers. HAProxy [6] and Nginx [9] use the
kernel stack, establishing connections with both the client and the
server. This design requires the LBs to maintain the state of both
connections simultaneously and use TCP splicing [54] to transfer
received data between the two connections. These LBs need to
perform congestion control, which consumes huge CPU resources.
Yoda [33] attempts to solve these problems by using tunneling op-
erations to adjust the IP/TCP headers to splice the two connections
so that the congestion control will be performed by the server and
the client. However, tunneling operations and storing information
on other servers introduce additional latency. In addition, RSS is
widely used in commercial NIC. The NIC attempts to distribute the
flows evenly among the CPU cores, and one CPU core handles the
entire processing of the flow. However, this per-flow allocation may
lead to multiple elephant flows processed on a CPU core, and the
task of this CPU core is extra heavy, which affects the transmission
efficiency of other flows on this core [38].
L7 Load Balancers Accelerated with Programmable Hard-
ware. Prism [39] uses a set of front-end servers in combination with
a programmable switch to complete load balancing. The front-end
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Figure 1: Miresga architecture.
server passes the serialized TCP connection so that the back-end
server can easily reestablish the connection from it. The IP/port is
modified with the programmable switch, and the subsequent packet
delivery is directly sent through the programmable switch without
the front-end involvement. However, the design that needs to fre-
quently publish entries to the programmable switch is limited by
the limited modification speed of the programmable switch, which
introduces additional delay. AccelTCP [58] leverages the SmartNIC
to accelerate the TCP stack by offloading the connection setup and
teardown to the SmartNIC so that the CPU can concentrate on
the processing of subsequent packets. It also supports offloading
the TCP splicing to the SmartNIC, but the CPU will not be able to
detect any more packets for this flow. It is not suitable for L7 load
balancing because some flows may send multiple requests that need
to be processed by different servers, which asks the LB to close the
old connection and establish a new connection. Moreover, the cost
of equipping LBs with SmartNICs is huge. We compare the cost of
using Tofino switches and SmartNICs in Appendix A.
3 Miresga Overview
Before delving into the design details of Miresga, we first provide
its high-level overview. This section begins with the architecture
of Miresga and then follows with an example demonstrating its
workflow.
3.1 Architecture
Given the current limitations of both software-based and hardware-
accelerated load balancing solutions, Miresga seeks to bridge the
gap by combining the flexibility of CPU-based header parsing and
state-of-the-art software optimization techniques with the high-
speed packet processing capabilities of programmable ASICs to
enhance L7 load balancing. Miresga divides the L7 load balancing
task into three main parts: 1) connection establishment, 2) applica-
tion layer protocol parsing, and 3) subsequent packet forwarding
through splicing two connections. Figure 1 shows the architecture
of Miresga, which mainly consists of three components: the pro-
grammable switch, the front-end server, and the back-end agent
running on the back-end server. We use these three components
together to complete three tasks:
Programmable Switch. The programmable switch not only needs
to fulfill its original forwarding function but also takes on some
simple stateless tasks. We assign it the task of establishing connec-
tions with clients, i.e., returning a SYN-ACK packet when receiving
a SYN packet from the client. Considering that the design of the
programmable switch is better suited for handling elephant flows,
we also delegate one part of the task of connection splicing on
elephant flows after the two connections have been established.
The programmable switch retrieves elephant flow information from
its local table and then modifies the IP and port based on this infor-
mation.
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Figure 2: Miresga’s complete workflow on one flow.
Front-end Server.With the flexible CPU, the front-end server is
responsible for parsing the application layer protocol, determining
whether the flow qualifies as an elephant flow, and selecting the
back-end server based on the pre-configured rules. Then the front-
end server establishes the connection with the back-end server.
After the connection is established, the front-end server sends the
flow information to the programmable switch if the flow is an
elephant flow. Otherwise, the front-end server performs tasks like
the programmable switch and modifies the IP and port.
Back-end Agent. Due to the limited resources of the pro-
grammable switch, we delegate the resource-intensive task of syn-
chronizing sequence and acknowledgment numbers to the back-end
agent, which has more memory. The back-end agent modifies the
sequence or acknowledgment numbers to ensure that the sequence
and acknowledgment numbers received by the client and Web
server match those stored on each side.
3.2 Workflow by Example
In this subsection, we demonstrate an example of Miresga process-
ing an HTTP 1.0 GET request to show its workflow. Figure 2 shows
how Miresga works on a flow. When a client starts to establish a
connection (①), the programmable switch just returns a SYN-ACK
packet with a random sequence number (②), awaiting the establish-
ment of the connection and the client sending an HTTP request.
Upon receiving the HTTP request (③), the programmable switch
transmits it to the front-end server (④) to process. The front-end
server caches this packet, parses the relevant parts of the HTTP
request, determines the back-end server based on pre-configured
rules, and then sends a special SYN packet with the acknowledg-
ment number that was replied by the programmable switch to the
selected server to establish a connection (⑤). After receiving the
SYN packet, the back-end agent will store the acknowledgment
number to the BPF Map with pre-allocated memory specifically
for storing sequence number information and then send a normal
SYN packet to the kernel stack (⑥), waiting for the kernel stack
to return the SYN-ACK packet (⑦). It will calculate the difference,
store it in the BPF Map, and send this to the front-end server (⑧).
The front-end server then sends the cached packet to the back-end
server (⑨). If the front-end server finds this flow is an elephant
flow according to the L7 protocol, the front-end server will send
the entry to the programmable switch (⑨’). The local control plane
will write this entry to the Offloaded Connection Tanle. For the
subsequent responses, the programmable switch or the front-end
server will modify the IP and port. The back-end agent will mod-
ify the sequence and acknowledgment number. For the inbound
traffic packets, Miresga will modify its ⟨𝑑𝑠𝑡𝐼𝑃, 𝑑𝑠𝑡𝑃𝑜𝑟𝑡⟩ to the real
IP and port (⟨𝐷𝐼𝑃, 𝐷𝑃𝑜𝑟𝑡⟩) of the back-end server, and for the out-
bound traffic packets, Miresga will modify its ⟨𝑠𝑟𝑐𝐼𝑃, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡⟩ to
⟨𝑉 𝐼𝑃,𝑉𝑃𝑜𝑟𝑡⟩. So, the client can not get the real IP and port of the
back-end servers, thus protecting them to a certain extent. When

receiving FIN/RST packets from the client or the back-end server,
we will remove the entry from the Offloaded Connection Table, Full
Connection Table, and the BPF Map.
4 Design Details
This section presents the design details of Miresga. We mainly intro-
duce our designs on how to solve the three challenges mentioned
before.
4.1 Efficient Connection Splicing
Connection splicing is carried out jointly by three components.
Once the connection with the back-end server is established, the
flow enters the connection splicing phase. Depending on whether
the flow is offloaded to the programmable switch, the IP/port is
modified either by the front-end server (i.e., slow path) or the pro-
grammable switch (i.e. fast path). The back-end agent is responsible
for modifying the sequence and acknowledgment numbers before
the Web server processes the request. In this way, two connections
are merged into one. We will explain how the front-end server
performs in §4.2. In this subsection, we mainly introduce the design
of the programmable switch and the back-end agent.
4.1.1 Programmable Switch in Action. This sub-section describes
how programmable switches handle connection splicing for of-
floaded flows and correctly forward the remaining flows. InMiresga,
the programmable switch mainly has five key components:
• Key Extraction: This module first determines the direction of
this flow and then computes the key corresponding to the direc-
tion.

• Connection Query: It occupies the majority of stages in the
ingress pipeline. Based on the computed key, we find the corre-
sponding entry in the Offloaded Connection Table and set up the
metadata to pass it to the egress pipeline.

• Packet Steering: This module determines which egress port the
packet should be forwarded to according to whether the packets
belong to the offloaded traffic and according to the flow direction.

• Header Rewriting: It is responsible for adjusting the IP and
port based on the metadata set by the Connection Query mod-
ule. It also needs to generate the SYN-ACK packet to establish a
connection with the client.

• Offloaded Connection Table: It stores the compressed infor-
mation of the offloaded connections and can be accessed by the
Connection Query module. The control plane can also use the
vendor-provided southbound APIs to update its entries.
Figure 3 shows the workflow of the data plane. All packets need

to be processed in the ingress pipeline first and then in the egress
pipeline. Miresga comprises four modules in the ingress pipeline.
First, packets are processed in the Key Extraction module to extract
the key and determine the direction of the packet. After obtaining
the key, the Connection Query module checks if the key exists in
the Offloaded Connection Table. Then Miresga sets the compressed
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Figure 3: The workflow of Miresga Programmable switch
information stored in the Offloaded Connection Table as metadata.
The Packet Steeringmodule determines the egress port of the packet
based on its direction and whether it belongs to the offloaded flow.
In the egress pipeline, the primary task is to perform connection
splicing based on the metadata. Only packets belonging to the
offloaded flows will be rewritten. The Header Rewriting module
will modify the IP and port based on the metadata. Especially, for
the inbound SYN packet, the Header Rewriting module will return
a SYN-ACK packet.

Since programmable switches have very limited memory re-
sources, the capacity would be severely restricted if we stored
complete information about each connection. Hence, Miresga saves
memory space by compressing table entries. Considering that using
hash values as keys requires the involvement of the programmable
switch’s slow control plane to handle hash collisions, Miresga
adopts an alternative method to compress the table entries.

For both inbound and outbound packets of the same flow, the
common point is that either the source IP/Port (⟨𝑠𝑟𝑐𝐼𝑃, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡⟩) or
the destination IP/Port (⟨𝑑𝑠𝑡𝐼𝑃, 𝑑𝑠𝑡𝑃𝑜𝑟𝑡⟩) matches the client IP/Port
(⟨𝐶𝐼𝑃,𝐶𝑃𝑜𝑟𝑡⟩). Also, as each TCP connection is uniquely identi-
fied by its ⟨𝑠𝑟𝑐𝐼𝑃, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡⟩ and ⟨𝑑𝑠𝑡𝐼𝑃, 𝑑𝑠𝑡𝑃𝑜𝑟𝑡⟩ tuple, there can
only be one flow between the same ⟨𝐶𝐼𝑃,𝐶𝑃𝑜𝑟𝑡⟩ and the virtual
IP/Port (⟨𝑉 𝐼𝑃,𝑉𝑃𝑜𝑟𝑡⟩) which is exposed to public at any given
time. Hence we can use the tuple ⟨𝐶𝐼𝑃,𝐶𝑃𝑜𝑟𝑡⟩ as the identifier
for this flow. Since both ⟨𝑉 𝐼𝑃,𝑉𝑃𝑜𝑟𝑡⟩ and the real IP/Port of the
servers (i.e., the direct IP/Port, ⟨𝐷𝐼𝑃, 𝐷𝑃𝑜𝑟𝑡⟩) are set up by the
service provider, we can access all ⟨𝑉 𝐼𝑃,𝑉𝑃𝑜𝑟𝑡⟩ and ⟨𝐷𝐼𝑃, 𝐷𝑃𝑜𝑟𝑡⟩
tuples and store them into two tables, called VIP Table and DIP
Table I, of the programmable switch. Moreover, in the entries
of the Offloaded Connection Table, we can use one index value
𝐷_𝑖𝑛𝑑𝑒𝑥 to compress ⟨𝐷𝐼𝑃, 𝐷𝑃𝑜𝑟𝑡⟩ tuples and store the mapping
of 𝐷_𝑖𝑛𝑑𝑒𝑥 and ⟨𝐷𝐼𝑃, 𝐷𝑃𝑜𝑟𝑡⟩ in another table called DIP Table
II. To get the key ⟨𝐶𝐼𝑃,𝐶𝑃𝑜𝑟𝑡⟩, the Key Extraction module firstly
determines whether the ⟨𝑠𝑟𝑐𝐼𝑃, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡⟩ is in the DIP Table I and
whether the ⟨𝑑𝑠𝑡𝐼𝑃, 𝑑𝑠𝑡𝑃𝑜𝑟𝑡⟩ is in the VIP Table. If the VIP Table is
hit, the packet is considered inbound, and ⟨𝐶𝐼𝑃,𝐶𝑃𝑜𝑟𝑡⟩ represents
⟨𝑠𝑟𝑐𝐼𝑃, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡⟩. If the DIP Table I is hit, the packet is considered
outbound, and ⟨𝐶𝐼𝑃,𝐶𝑃𝑜𝑟𝑡⟩ represents the ⟨𝑑𝑠𝑡𝐼𝑃, 𝑑𝑠𝑡𝑃𝑜𝑟𝑡⟩.

Another task is how to schedule these modules within a limited
number of stages. The pipelined design of a programmable switch
means that each of our modules takes up a certain number of stages,
but we can combine them to reduce the number of stages by placing
them in ingress and egress pipelines respectively. Through this, the
other modules are placed in as less stages as possible, so that the
Offloaded Connection Table has more stages. The detail of the table
arrangement is described in Appendix B.
4.1.2 Back-end Agent in Action. The programmable switch can
complete the modification of IP and port, as well as the synchroniza-
tion of sequence numbers and acknowledgment numbers entirely

on its own. However, unlike IP and port, which can be compressed
without loss, it is challenging to compress the nearly random dif-
ference between sequence numbers and acknowledgment numbers.
This necessitates storing the full 32-bit difference in the limited
memory of the programmable switch. Given that the server has
ample memory space compared to the limited memory of the pro-
grammable switch, we opt to introduce a back-end agent to handle
the more memory-intensive task of sequence number and acknowl-
edgment number synchronization. We use eBPF to implement the
back-end agent. Since the eBPF program runs in the kernel and
the operations we perform are simple, the back-end agent has a
negligible impact on throughput or latency. The back-end agent
consists of two main parts: Ingress Program using XDP [30] and
Egress Program using TC [31]. It synchronizes the sequence num-
ber and the acknowledgment number between the two connections.
Two BPF Maps (seq map, diff map) are used to transfer information
between two programs.

Upon receiving the special SYN packet from the front-end server,
the Ingress Program inserts the acknowledgment number (i.e., the
sequence number the programmable switch replied) 𝐿 into the seq
map using ⟨𝑠𝑟𝑐𝐼𝑃, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡⟩. The Web server, utilizing the kernel
stack, then returns a normal SYN-ACK packet. The Egress Program
gets the number from the seq map, calculates the diff Δ between the
sequence number 𝑆 of the SYN-ACK packet and the found number
𝐿 in the seq map, and then inserts Δ = 𝑆 −𝐿 to the diff map. Since in
our design, the LB does not modify any of the load content, the se-
quence numbers grow at the same rate for both connections, so the
difference stays the same throughout the flow. For the subsequent
ingress packet, Miresga adds Δ to the acknowledgment number, and
for the subsequent egress packet, Miresga deletes Δ to the sequence
number. When the ingress or egress receives the RST/FIN packet,
the entry is removed from the BPF Map.

4.2 Lightweight Protocol Stack
In L7 load balancing, the critical task is to obtain and parse the
application layer protocol. The front-end server functions more as
a bridge, connecting the client and the back-end server. Although
utilizing the kernel protocol stack is convenient for deployment, its
inherent complexity and redundancy are detrimental to Miresga’s
performance. To mitigate this issue, the front-end server employs
our custom-designed lightweight protocol stack. In this subsection,
we mainly show the details of the compressed TCP finite state ma-
chine (FSM). We take HTTP 1.0 as an example, while the discussion
of other protocols is deferred to Appendix C.

The task of establishing connections with the client is simple, so
we offload it to the programmable switch. Considering the potential
for SYN-Flooding attacks, we only pass the flow to the lightweight
protocol stack for processing after the client sends a request. The
front-end server stores the states and relevant information of all
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Figure 4: The state transition diagram of the TCP FSM
connections in a hash map called the Full Connection Table in the
memory, using the ⟨𝐶𝐼𝑃,𝐶𝑃𝑜𝑟𝑡⟩ as the key. The state transition
diagram of the FSM is shown in Figure 4. The state is initialized
to 𝐼𝑁 𝐼𝑇 . When receiving the packet from the client with a new
request from a new flow, Miresga parses the request, finds the
corresponding load balancing rule, and sends the special SYN packet
whose acknowledgment number is set to the acknowledgment
number of the cached packet minus 1 to the back-end server. It
will also determine whether this flow is an elephant flow based on
the specific field of the HTTP GET packet like the URI or domain
name requested by the user. After Miresga receives the server’s
SYN-ACK response, it forwards the cached HTTP GET packet to the
back-end server. If the flow is an elephant flow, Miresga prepares
the information required to be offloaded. The offloaded data will
be translated into table entries and updated to the programmable
switch, and the state will be set to 𝑂𝐹𝐹𝐿𝑂𝐴𝐷𝐸𝐷 . Otherwise, the
state will be𝐶𝑂𝑀𝑃𝐿𝐸𝑇𝐸. In states𝐶𝑂𝑀𝑃𝐿𝐸𝑇𝐸 and𝑂𝐹𝐹𝐿𝑂𝐴𝐷𝐸𝐷 ,
the front-end server just performs connection splicing bymodifying
the IP and port, and then forwarding it. Especially, if Miresga detects
a packet containing a new request that requires a different back-end
server to process, it will terminate the current connection to the
back-end server and establish a connection to the new back-end
server. When the flow is completed, the front-end server returns
the RST packet, removes the entry in the Full Connection Table,
and informs the programmable switch to delete the corresponding
entry if needed.

Retransmissions are inevitable throughout the flow. Since both
the client and server need to acknowledge the correct receipt of
data packets, retransmissions occur if no response is received from
the other side within a certain period. Therefore, we have designed
a passive retransmission mechanism. The implementation details
are provided in Appendix D.

4.3 State Consistency Maintenance
Similar to existing proxy-like approaches, Miresga acts as a for-
warder, performing TCP splicing after it has established connections
with both the client and the server. However, the stateful nature of
the TCP protocol requires us to synchronize the state of the same
flow across different components. As the front-end server is respon-
sible for storing all flow states, Miresga must synchronize the states
between the front-end server and the programmable switch, as well
as between the front-end server and the back-end agent.

For the synchronization between the front-end server and the
programmable switch, there are two main subtasks to be addressed:
obtaining the initial sequence number of the client and the pro-
grammable switch and synchronizing the state of the flows to be

offloaded to the programmable switch. For the first one, the front-
end server can retrieve the initial sequence number of the client and
the programmable switch by subtracting 1 from the sequence num-
ber and the acknowledge number. For the second subtask, Miresga
permits the programmable switch to temporarily deviate from the
state of the front-end server. For flows involving small objects, the
extra latency incurred by adding an entry to the switch often ex-
ceeds the latency savings from offloading the flow. Consequently,
Miresga opts to offload only those flows where the duration of
subsequent packet delivery significantly surpasses the additional
latency caused by offloading. For other flows, Miresga refrains from
blocking traffic until the entry is written to the hardware, allowing
the front-end server to handle packets in the interim.

For the synchronization between the front-end server and the
programmable switch, Prism both synchronizes the state and avoids
the tedious TCP three-way handshake by passing serialized TCP in-
formation. However, this design means that we need to modify the
Web server running on the back-end server, which complicates de-
ployment. Given that the back-end agent only requires knowledge
of the two initial sequence numbers to synchronize the sequence
numbers and the acknowledgment numbers of the two connections,
we can leverage the unused acknowledgment number field in the
SYN packet to convey this information. The front-end server sends
a special SYN packet whose acknowledgment number is set to the
sequence number returned by the programmable switch, and the se-
quence number is set to the initial sequence number that the client
chooses so that we do not need any extra overhead to synchronize
information between the front-end server and the back-end server.

5 Implementation
We implemented the Miresga programmable switch on a 3.2 Tbps,
2-pipelined Intel Tofino programmable switch with a built-in Intel
Xeon D-1527 8-core CPU and 16GB of memory. We implemented
the Miresga programmable switch using ∼1K lines of P416 code for
the data plane and ∼1.4K lines of C code for the control plane to
receive the entries from the front-end server and insert them into
the offloaded connection table. The two pipelines are the same as
described in §4.1. We implemented the Miresga front-end server
using ∼1.5K lines of C++ code with DPDK-19.11. We implemented
the Miresga back-end agent using ∼0.5K lines of C code.

6 Evaluation
In this section, we intend to answer the following questions:
• Does Miresga outperform software and hardware load balancing
designs in terms of end-to-end throughput (§6.2.1) and end-to-end
latency (§6.2.2) across different response sizes?

• Is Miresga more suitable for application in heavy-tailed traffic
distributions like those in data centers (§6.2.3)?

• Can Miresga scale to take on larger traffic (§6.3)?
• Can our table entry compression and back-end agent design ef-
fectively conserve resources (§6.4)?

6.1 Testbed
Our testbed consists of a 3.2 Tbps, 2-pipeline Intel Tofino pro-
grammable switch, 4 servers with 16-core CPUs and 64GB of mem-
ory, and 1 server with 32-core CPUs and 128GB of memory. Each
server is equipped with a 100 Gbps Mellanox ConnectX-6 or 100
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Figure 5: End-to-end throughput and latency comparisonwith differentmessage sizes and using heavy-tailed traffic distributions.
The distribution of the response size in Traffic 1 is 100% 1KB; Traffic 2 is 70% 1KB, 20% 10KB, 8% 1MB, and 2% 10MB. The
distribution of the response size in Traffic 2 is 50% 1KB, 30% 10KB, 15% 1MB and 5% 10MB. We only measure the latency when
the response size is 1KB.
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message size.
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message size.
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Figure 6: Throughput with different CPU core numbers used. The gray bar chart shows the CPU usage of the back-end server

Gbps Intel E810CQDA2 NIC. We use two 16-core servers to gen-
erate HTTP requests and another two 16-core servers to handle
the request. We use the 32-core server to run the software L7
LB/front-end server for comparison. We use Nginx as the back-
end server to handle the requests. The programmable switch runs
the Miresga/Prism programwhen testing Miresga/Prism and acts as
a router when testing software load balancing. We choose HAProxy
with f-stack [73] as our software-based comparison baseline be-
cause it is widely adopted and provides high performance. We
implemented Prism [39] on the same programmable switch as our
hardware-based comparison baseline.

6.2 Performance
6.2.1 End-to-end Throughput. We test the end-to-end throughput
of Miresga, HAProxy, and Prism with different message sizes. We
use wrk [37] to generate the HTTP requests and use Nginx as the
Web server. We also use Lua scripts to modify HTTP headers to
request different files, simulating traffic in an actual production en-
vironment. We perform L7 load balancing based on domain names,
directing traffic with the domain name mysite1.com to one server,
and traffic with the domain name mysite2.com to another server.
Prior to this, we conducted a preliminary test to determine if offload-
ing the flow could accelerate the delivery of subsequent packets.
We observe that the performance gain from offloading becomes sig-
nificant when the message size reaches 64KB, effectively offsetting
the latency incurred by the offloading procedure. Consequently, we
have selected 64KB as the threshold for offloading.

We measure throughput by multiplying the number of requests
per second (RPS) reported by wrk with the response size. We set the
response sizes and then use wrk to issue the corresponding HTTP
requests. Figure 5a shows the throughput comparison of Miresga,
HAProxy, and Prism. In the case of large object transfers, Miresga
offloads the data transmission process—constituting the majority

of packets during the entire access—to the programmable switch.
As a result, the throughput advantage of Miresga over HAProxy
increases with the response size. At a message size of 64KB, the
throughput of Miresga reaches 3× that of HAProxy, and when
the response size is increased to 8MB, the throughput of Miresga
reaches 4× that of HAProxy. For small message sizes, Miresga also
achieves high performance due to its simplified protocol stack, with
throughput that is still 2× better compared to HAProxy. For Prism,
the hardware and software parallel strategy of Miresga makes it
achieve 5× throughput than Prism for small objects. For large ob-
jects, we find that our scheme performs similarly to Prism, as both
Miresga and Prism delegate the delivery of these objects to the
programmable switch.

6.2.2 End-to-end Latency. We use the same method as in §6.2.1
to issue requests. We run tests for three minutes at each response
size and use tcpdump [10] to capture the pcap files for analysis.
Figure 5b shows the average and the 90th latency with different
response sizes for the three designs. Since Miresga simplifies the
TCP stack, uses DPDK to improve the processing speed for small
objects, and leverages the programmable switch to accelerate the
big message transmission, Miresga has less latency than HAProxy
for both small and large objects. For Prism, it needs two entry op-
erations per request and blocks the traffic before the state is fully
synchronized, which leads to an increase in latency. The increase is
most obvious for small objects. Miresga circumvents this problem
well because of its hardware and software parallel design. Although
our overall design uses more components, the exception case of a
flow is handled entirely by the client and the back-end server. This
design makes our system more stable. The result that the latency of
the 90th percentile is not much different from the average latency
proves this. In contrast, HAProxy, where the load balancer manages
two connections, is more susceptible to abnormal conditions. For
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Prism, frequent entry modifications lead to greater latency fluc-
tuations when dealing with smaller objects. Consequently, Prism
exhibits the opposite behavior for small objects: the difference be-
tween the 90th percentile latency and the average latency is more
pronounced for smaller objects.
6.2.3 Real-world Traffic Simulation. In real data centers, traffic
distribution is often heavy-tailed, where a small proportion of flows
contribute to the majority of the data. To evaluate the performance
of Miresaga under a real-world workload, we generate two types
of heavy-tailed traffic distributions and use wrk to send requests
according to these distributions to the back-end servers. Figure 5c
shows the throughput comparison. For software load balancing,
as latency increases, the corresponding RPS decreases, resulting
in a decline in throughput. Since Prism does not perform well
when dealing with small objects, its RPS is not as good as Miresga,
resulting in some degradation in throughput. Figure 5d shows the
latency of the packets whose response size is 1KB. As mentioned in
§2.2, when using heavy-tailed traffic distributions, different flows
will compete with each other for the limited CPU time, causing
latency to increase. In contrast, Miresga offloads the elephant flows
to the programmable switch with high performance, ensuring that
elephant flows do not influence other flows processed by the front-
end server. There is only a slight increase in processing latency
compared to when all responses are 1KB. Prism, on the other hand,
is limited by its slow handling of small objects, resulting in higher
latency. With the increase of the proportion of large flows, the
number of requests issued by the client per second decreases so
that the pressure on the entries insertion becomes smaller. As a
result, the latency of Prism on 1KB objects decreases. These two
results indicate that Miresga is better suited for handling traffic
distribution in data centers.

6.3 Scalability
In addition to throughput and latency, another metric to measure
the performance of load balancing is scalability. We demonstrate
that our system scales well by adjusting the number of CPU cores
used by the front-end server. The result is shown in Figure 6. We
empirically choose two small message sizes (1KB, 16KB) and two
big message sizes (1MB, 8MB) to test. With small message sizes, the
Miresga front-end server, which processes all packets, becomes the
primary bottleneck. As the number of CPUs increases, the through-
put rises linearly, and similarly, the CPU usage of the back-end
servers also increases linearly. This demonstrates that we can en-
hance throughput further by deploying additional front-end servers.
The scenario changes when dealing with larger objects. In this case,
the front-end server can achieve very high throughput with min-
imal CPU resources, thanks to offloading the majority of packet
delivery to the programmable switch. The bottleneck shifts to the
back-end server capacity, which quickly reaches full utilization
per CPU. Therefore, we believe that our system’s performance can
be significantly improved by increasing the number of back-end
servers.

6.4 Maximum Number of Concurrent
Connections

To prove that our designs effectively improve the table capacity,
we successively test the largest table entry capacity before and

Table 1: The maximum number of concurrent connections
with and without a specific optimization method.
a: entry compression, b: table arrangement, c: back-end agent

Method Maximum # of Concurrent Connections

b+c 0.16M
a+b 0.86M
a+c 1.02M

a+b+c 1.43M

after using each optimization: the table compression, the table
arrangement, and the back-end agent. Table 1 shows the results. The
entry compression greatly compresses the space of one entry and
merges the two entries that were originally set for the inbound and
outbound traffic distribution, thus providing the largest increase
(∼9×). By properly scheduling the entries in ingress and egress,
we allocated 2 additional stages for the offload connection table,
resulting in a capacity increase of nearly 40%. Without the back-
end agent, we need to store an additional 32-bit sequence number
difference, which is 1.66× larger than without the back-end agent.

7 Limitations
Although we have attempted various optimization methods to en-
hance performance, our design still faces several limitations. Firstly,
the speed at which the built-in CPU added the entries to the Of-
floaded Connection Table is low, making it challenging to increase
the CPS. Secondly, our design processes encrypted packets more
slowly because it is hard to perform the TLS termination on the
programmable switches, so we need software help to do TLS ter-
mination. However, there are several hardware acceleration tech-
niques available, so we believe that achieving TLS termination on
programmable switches is not impossible. Finally, although we have
compressed table entries, the limited size of SRAM still constrains
performance.

8 Conclusion
In this paper, we propose Miresga, which, to our knowledge, is the
first attempt to accelerate L7 load balancing using programmable
switches. To leverage the full performance potential of the pro-
grammable switch, Miresga partitions the L7 load balancing process
into three distinct parts: connection establishment, rule applica-
tion, and data transmission. By offloading elephant flows to the
programmable switch, which constitutes the bulk of the traffic, to
the switch, Miresga achieves a significant boost in throughput and
a reduction in latency. Our experiment proves that Miresga is more
suitable for heavy-tailed traffic distributions, which are similar to
those in the data center. In the future, we plan to expand our design
further, such as by exploring the introduction of RDMA to expand
the limited memory of programmable switches.

This paper does not raise any ethical issues since all traffic is simu-
lated and has no personal data.
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A Cost Comparison

Table 2: Cost Comparison

Bandwidth Price Bandwidth/Price

Tofino1 3.2Tbps $10,020 0.32Gbps/$
Agilio2 40Gbps×2 $703 0.11Gbps/$

BlueField3 400Gbps $4,030 0.10Gbps/$

We have collected and analyzed a comparison of throughput and
cost between Tofino switches and two commonly used SmartNICs.
The results in Table 2 indicate that, for processing equivalent traffic
volumes, the cost of SmartNICs is significantly higher than that of
programmable switches.

B Table Arrangement

DIP Table II

Offloaded Connection Table

Stage 1

VIP Table

DIP Table I

Forwarding
TablesPreprocess

SYN-
Responder

Stage 2 Stage 3-10 Stage 11 Stage 12

Figure 7: Table Arrangement

Since the same stage in the ingress pipeline and the egress pipeline
share resources, and the limited SRAM prevents us from expanding
the connection capacity, we specially allocated the tables described
above to make full use of the in-switch memory. Figure 7 shows
the table arrangement of Miresga using a typical 12-stage pro-
grammable switch as an example. Since some tables do not occupy
all the SRAM in a stage, our design integrates these tables and places
them in a single stage. In the first two stages, we combine VIP Table
I, DIP Table I, and DIP Table II. We arrange the Forwarding Tables
at the last stage of the ingress pipeline. Since multiple cases arise
in the Packet Steering module, we need to perform preprocessing,
which we place in the second-to-last stage. The remaining stages
are allocated to the Connection Query module. Through this de-
sign, we maximize the SRAM block size allocated for the Offloaded
Connection Table.

1According to https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3485&
idcategory=0 on December 5th, 2024.
2According to https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3018 on
December 5th, 2024.
3According to https://www.shi.com/product/46801187/NVIDIA-BLUEFIELD-3-
B3210E-E-SERIES-FHHL-DPU on December 5th, 2024.
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C Other Protocol Discussion
In this section, we discuss the differences of Miresga when using
protocols other than HTTP 1.0.

Unlike HTTP 1.0, HTTP 1.1 [28] allows a single TCP connection
to be reused for multiple requests, and these requests may need
to be forwarded to different servers. In the programmable switch,
Miresga can detect the presence of the content of the application
layer in a packet by comparing the total length field in the IP header
with the calculated header length obtained from the sum of the
IP header length and the TCP header length. Therefore, when a
packet with the application layer data is received from the client, the
programmable switch will send the packet to the front-end server
to check if the destination server needs to be changed. If the server
to which the client is connected changes, Miresga simply closes
the old connection, establishes a new connection with the new
server, and then modifies the corresponding entry in the Offloaded
Connection Table if needed.

To avoid head-of-line blocking, HTTP 2.0 [15] and SPDY [14]
propose out-of-order delivery of responses. We can still forward
the packets by adjusting the IP/TCP header correctly. However, our
design does not fully support multiplexing, especially when we
intend to route different requests to different servers, as we need
to establish connections with multiple servers simultaneously. In
fact, this poses a challenge for any design of the L7 load balancing
because we can not support frames from multiple different streams
within a single packet. Essentially, we are transmitting data across
multiple connections, contradicting the principle of multiplexing,
where multiple data transfers are completed within a single con-
nection. Therefore, if we receive multiple requests at the same time,
we will cache these requests. After the first request is completed,
Miresga closes the old connection, establishes the new connection,
and sends the next request. However, if all requests can be directed
to a single server for processing, no modifications to the design
are needed. The design of adjusting IP/TCP headers would still
facilitate data migration.

QUIC [46] uses UDP rather than TCP as the transport layer
protocol. However, QUIC encrypts its header so that we can’t use
the eBPF program to modify the header. We leave that for future
work.

D Retransmission

Figure 8: Retransmission Example

Miresga utilizes the client and server’s retransmission mechanism
to handle possible packet loss. Miresga does not need to consider
packet loss from the client or server side, as the client or server
will automatically retransmit packets if no response is received
within the timeout period. The Packet Processor will handle only
the retransmitted packets. Thus, Miresga only needs to address
the potential loss of packets sent by the front-end server or the
programmable switch. Figure 8 illustrates how we handle retrans-
missions. Since we want to lighten the load of the front-end server,
we prefer the front-end server not to actively decide whether to
retransmit outgoing packets but rather to make this decision pas-
sively based on whether duplicate packets are received. Miresga
stores the last packet received and the last packet sent for each flow.
Whenever a packet is received, Miresga first checks if the received
packet is the same as the last received packet. If it is, Miresga simply
resends the last sent packet. Through this method, Miresga achieves
a passive retransmission mechanism.
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